IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-32, NO. 5, MAY 1984

491

Transient Analysis of a Stripline Having a
Corner in Three-Dimensional Space

NORINOBU YOSHIDA anp ICHIRO FUKAI

Abstract — The transient analysis of electromagnetic fields has shown its
utility not only in clarifying the variation of the fields in time but also in
gaining information on mechanisms by which the distributions of an
electromagnetic field at the stationary state are brought about. We have
recently proposed a new numerical method for the transient analysis in
three-dimensional space by formulating the equivalent circuit based on
Maxwell’s equation by Bergeron’s method. The resultant nodal equation is
uniquely formulated in the equivalent circuit for both the electric field and
the magnetic field. In this paper, we deal with the stripline which should be
analyzed essentially in three-dimensional space because of its structure.
The time variation of the electric and magnetic field of the stripline having
a corner is analyzed and the remarkable changing of distribution of the
field is presented as a parameter of time and of conditions imposed by the
corner structure,

I. INTRODUCTION

HE TRANSIENT ANALYSIS of electromagnetic

fields not only clarifies the variation of the fields in
time but also provides information on mechanisms by
which the distributions of electromagnetic fields at the
stationary state are brought about. We have recently pro-
posed a new numerical method for the transient analysis in
three-dimensional space [1], [2]. The method was based on
the equations obtained by Bergeron [3]. The equations
show the character of the propagation of electromagnetic
'waves in the equivalent circuit based on Maxwell’s equa-
tion [4]. This method has two important advantages for the
analysis. One is the formulation of the electromagnetic
fields in terms of the variables in the equivalent circuits.
This treatment enables us to see that the nodal equation is
uniquely formulated in the equivalent circuit for both the
electric field and the magnetic field because of the duality
of both field components. The other advantage is the
formulation by Bergeron’s method with its many merits,
such as the representation of the medium by the lumped
elements at each node and its reactive characteristics which
are represented by the trapezoidal rule of the differential
equation in the time domain, This treatment is based on an
iterative computation in time using only the values ob-
tained after the previous step. Consequently, the savings in
memory storage space and computer time is remarkable.
The formulation of this method is fundamentally equiva-
lent to that of the Transmission-Line Matrix (TLM), be-
cause both methods are based on the property of the
traveling wave, that is formulated as the general solution of
one-dimensional wave equauon by d’Alembert. But the
Bergeron s formulation [5], in terms of the voltage variable
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Fig. 1. Three-dimensional lattice network model of Maxwell’s equa-

tions.

and current variable, presents the direct handling of the
electromagnetic field variables and the characteristics of
the medium instead of the division of each variable into the
incident and reflective components and the composition of
those in TLM method [6].

In this paper, we deal with the stripline which should be
analyzed essentially in three-diménsional space because of
its structure. The stripline is widely used as the transmis-
sion medium in MIC design, and its small size compared to
the wavelength is the main reason for the good perfor-
mance of microwave components and usually permits the
treatment of circuits as a system composed of lumped
elements in the analysis. But in high-frequency application,
such as millimeter-wave devices, especially when using the
pulse-wave technique that has progressed remarkably with
the digital techmque the exact treatment of the higher
components in the spectrum of the waves are indispens-
able, so the distributed formulation of the dev1ces in three-
dimensional space is essential.

In the following sections, the fundamental formulations
for the stripline by our method are briefly described, and
derived parameters, such as the characteristic impedance
and wavelength, are examined and compared with those
obtained analytically. Lastly, the time variation of the ficld
distribution in the stripline with a corner is shown for
several conditions of the structure.

II. THREE-DIMENSIONAL NODAL FORMULATION OF
MAXWELL’S EQUATION
A. Three- Dimensional Equivalent Circuit

We now consider the formulation of nodal equations for
three-dimensional analysis of the electromaguetic field in
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‘ - TABLEI
CORRESPONDENCES BETWEEN THE FIELD VARIABLES IN
MAXWELL’S EQUATION AND THE EQUIVALENT CIRCUIT AT EACH
KIND OF NODE IN THE EQUIVALENT CIRCUIT
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the time domain. In Fig. 1, the three-dimensional network
model is shown. It is well known that this network gives a
fundamental connection between the field variables in
Maxwell’s equation. This model is used in other methods,
such as the “TLM” by P. B. Johns. In this network, each
. set of two-dimensional equations for the propagation of
waves in each plane is related to a node and the connected
lines. We interpret this network as the equivalent circuit, in
which the line between nodes is a one-dimensional trans-
mission line and the node is the point where the continuity
of currents occurs. In Table I, the correspondence between
the equivalent circuit variables and field quantities are
shown at every kind of node of the network. The nodes are
classified into two types. One is the electric node at which
an electric field component is treated as a voltage variable
and the other is a magnetic node at which a magnetic field
component is treated as a voltage variable. The electric
node corrésponds to the shunt node and the magnetic node
correspond to the series node in the “TLM”. However, in
our method the introduction of the magnetic current in the
magnetic nodes results in the existence of the shunt node
only in a sense of “TLM”, where the continuity of current
is postulated. In this paper, all variables at the magnetic
nodes are characterized by the symbol “ *” because of the
-duality of their physical meaning, as compared with their
interpretation at the electric node. In Fig. 2, the fundamen-
tal connection between the nodes in the network is ex-
pressed. The correspondence of the variables is also il-
lustrated in each node and each transmission line. The
direction of the Poynting vector, which is decided by the
set of an electric and a magnetic field component supposed
in each one-dimensional transmission line, is also shown.
Each of the supposed directions of the Poynting vector
coincides with that of the currents in both nodes of the
transmission line, so the currents are defined as the usual
conduction currents in the electrical circuit. The gyrator is
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Fig. 2. (a) Fundamental connection of the node in the network and
detailed expression of the variables in the equivalent circuit. The
direction of the Poynting vector is shown by the symbol “ ~” at each
transmission line. (b) Definition of gyrator in (a), (1) positive gyrator,
and (2) negative gyrator.

inserted in series with each magnetic node to show the
duality of the physical meaning of the circuit variables of
both nodes of each transmission line. At D, nodes, negative
gyrators are inserted, since the corresponding circuit vari-
ables and electromagnetic variables have a polarity oppo-
site to that at the nodes B,. We interpret this negative

_gyrator as a circuit representation of the self-consistence of

the Maxwell’s equations, and the node to be inserted is
determined by the correspondence of circuit variables and
electromagnetic variables.

B. Bergeron’s Method

Next, we formulate the propagation characteristics of a
one-dimensional transmission line by Bergeron’s method.
In Fig. 3(b), showmg a section of lossless line, the propaga-
tion characteristics of waves in the time domain are given
by the one-dimensional wave-equation

o(k,t)+z-i(k, 1) =v(k—1,t—At)+z-i(k—1,1— Ar)

(1a)
v(k—1,0)—z-i(k—1,¢)=v(k,t — At)—z-i(k,t — At)

(1b)
where the parameter k denotes the node numbers and z is
the characteristic impedance of the line, ¢ is time and Az is
the transit time between two adjacent nodes, which also
becomes the fundamental time step in the numerical com-
putation. Each lumped element to be connected with the
line at nodes is characterized as follows: the conductance G

is expressed in terms of its branch voltage v, and current i,
by

0, (k, 1) = G(k)i, (K, 1). ()
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Fig. 3. Typical equivalent circuit {a) of the one-dimensional transmis-
sion line and its description (b) by means of Bergeron’s method.
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Fig. 4. Equivalent circuit at each A4, node in the diclectric medium.
Dielectric loss is expressed by the parallel conductance.

In this equation, the conductance G is a function of the
parameter k at each node. The capacitance C(k) is defined
through the trapezoidal rule and is given by

v(k,t)—R i (k,t)=v,(k,t —At)+R.i(k,t — A1)
(3a)

where
_ At
<= 2C(k)

In this equation, (v,,i,) is a pair of branch voltages and
currents of the capacitance. A comparison of both sides in
(1a), (1b), and (3a) shows that all values calculated at time
t are only a function of ones at the previous time 7 — Ar.
The nodal equation for each node at time ¢ is independent
of the values of the adjacent node at time 7. The time
responses are thus iteratively computed at each time, ¢
from values of the circuit values at every node obtained at
the previous steps.

R

(3b)

C. Three- Dimensional Nodal Equations

For the three-dimensional network, the characteristics of
the transmission line are formulated by Bergeron’s method.
In Fig. 4, the example of the equivalent circuit is shown at
the node A, where the electric field E, is supposed to be a
voltage variable and the magnetic fields — H_ and H, are
supposed to be the current components in the directions z
and x, respectively. Application of (1a) and (1b) to each
line connected to the node yields the following equation:

I/)’(l’m’n’t)+ZOIzl(l7ma nat)
=I;i(l’m’n_1’t_At)+ZOV;*(l3man—19t—At)
(4a)
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V,(I,m,n,t)=zoL,(1,m,n,t)
=L mon+1,0 - At) -z VF(L,m,n+ 1,1 — At)
(4b)

V,(l,m,n,t)+ 2ol (I,m,n,t)
=IX(I-1,m,n,t—At)+zV*(I-1,m,n,t—Atr)
(4c)

V,(I,m,n,t)—zoI,(l,m,n,t)
=IX(I+1,m,n,t = At)—zV*(I+1,m,n, t — At).
(4d)

The parameters /, m, and n denote the described position
numbers of x, y, and z directions, respectively. Then (2) is
written with the notation of this case as follows:

V,(I,m,n,t)=4G(l,m,n)1,(I,m,n,t).
Equations (3a) and (3b) are again written as follows:
V,(I,m,n,t)—R.I(l,m,n,t)

=V,(l,m,n,t = At)+ R I (Il,m,n,t - At) (6a)

(5)

where

__ A
¢ 8AC(I,m,n)’

The conductance G and capacitance AC are listed in Table
I and are shown to correspond to the conductive loss and
the electrical displacement of the dielectric medium, re-
spectively. The conductance G also corresponds to the
equivalent dielectric loss in the medium. These quantities
are considered to be a function of the position variables /,
m, and n. The continuity of the current at node A(/, m, n)
is given by

R (6b)

Izl_Iz2+Ix1_1x2_Id_Ic=0' (7)
Substituting (4a)—(4d), (5), and (6a) into (7), the unified
nodal equation in a dielectric medium with conductive or
equivalent dielectric loss is given by
R (T + 05 + U3 + U ) + 20,

2o+ R, (4+ 2o:4G (I, m, n))

V,(1,m,n,t)=

(®)

where ¥, ¥, ¥, and ¥} correspond to the right-hand
sides of (4a)—(4d), respectively, and ¥. is equal to the right
side of (6a). Equation (8) is iteratively evaluated at every
A, node, and the time response of the field in the overall
region is analyzed by the same procedure at other kinds of
nodes. Each component of the currents at the time ¢ is
evaluated by substituting V,(¢) in (8) by V,(¢) in the left
sides of (4a)-(4d), (5), and (6a). The other variables at
other nodes also are obtained in the same manner. For
example, the voltage variable ¥*(¢) in the magnetic nodes
F, is given as follows:

R* (¥, + ¥, + ¥, + ¥,)+ 23V
2+ R¥(4+ 234G (I, m’', "))

(%a)

VX, m' n' 1) =
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Fig. 5. Geometry of a stripline with a 90° bend.

L
shortnode
f Vx=0)

. short node
(Vz=0}

Fig. 6. Equivalent circuit of the surface of the stripline with infinite
conductivities.

where
At
SAC*(I’,m’,n’) "

In such magnetic nodes, the conductance G* and the
capacitance AC* have duality with those in electric nodes.
These then correspond to losses of the magnetic current
and the magnetization. But (8) and (9) have the same form
and calculations are the same as for the electric nodes.
These characteristics occur as a consequence of the appli-
cation of the duality between the electric field and the
magnetic field in Maxwell’s equations. Thus, the introduc-
tion of magnetic currents is an important concept in this
method and constitutes the difference between this method
and the “TLM” [7]. Both methods are fundamentally
based on the d’Alembert’s general solution for one-dimen-
sional wave equation, but the use of both voltage and
current variables in this method enables us to express the
characteristic equation of the medium by lumped circuit
element instead of the artificial stub in “TLM”. This
formulation is extended to more complex characteristics
such as dispersive, resonance, and anisotropic media [8].

R:= (9)

TIL.

The transient analysis for the stripline with a corner has
been performed by the method described in the preceding
section. In Fig. 5, the model of the stripline with the corner
is shown. In this figure, Ad is the interval between adjacent
nodes in the equivalent circuit. In order to describe this
model by the “Nodal Equation”, three different conditions
are introduced, namely, the boundary condition at the strip
conductor, the boundary condition at the free boundary,
which is supposed to be the surface of the analyzed region
in air and dielectric medium, and the condition of the

NUMERICAL RESULTS AND DISCUSSION
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(®

Fig. 7. Equivalent circuit of the free boundary. (a) The xz-plane of the
top of the analyzed region. (b) The yz-plane of the side of the region,
where R, is the characteristic impedance of the free space.

— Groung/
Ipldm
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Fig. 8. Equivalent circuit of the input condition, where R, is the char-
acteristic impedance of the stripline, and E, is the voltage source, in this
analysis, of the sinusoidal wave expression as E, = E,sin(27/T)nAt¢,
(E,: Amplitude, T: Period of the sinusoidal wave, n: Number of
iteration).

200

150

zZin)

100

50

W/H

Fig. 9. Charactéristic impedance and wavelength as a function W/ H of
a straight stripline. °--- result computed by our method, —---
analytical results by E. Yamashita and R. Mittra.

dielectric. Firstly, the boundary condition of the conductor
is described. The conductor is supposed to have infinite
conductivity, so the tangential component of electric fields
on the surface of the conductor should be zero. This
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Fig. 10. . Time variation of the distribution of the electrical field E, on the observed xz-plane shown in Fig. 5 and in the case of
the corner pattern (1), where ¢, is the initial time at which the input wave is applied to the input plane. T is the period of

the applied sinusoidal wave.

to* 2T <t < t,+25T
X

Time variation of the distribution of the electrical field E, in
the case of the corner pattern @ in Fig. 5.

Fig. 11.

condition is realized by short-circuiting the appropriate
electric node, in which the tangential electric field at the
surface is the voltage variable, and by open-circuiting the
appropriate magnetic node, in which the tangential compo-
nent of the electric field is the current variable, that is, it is
considered as a magnetic current. These situations are
shown in Fig. 6. In the equivalent circuit, the plane in
which the strip conductor is positioned is arbitrarily de-
fined. In this analysis, the plane is situated at the plane
containing D,, F,, and E, nodes. Thus, the D, and E,

nodes are short-circuited, because the electric fields E, and

E, are to be zero at both surfaces of the conductor, and F,
nodes are neglected because all the field components £,

E,, and H, are equal to zero on the surface. Next, the free
boundary condition is expressed as a nonreflective
termination, at which the load resistance, equal to the
characteristic impedance of the free space, approximates
the matching condition. The equivalent circuit of this con-
dition is shown in Fig. 7, in which (a) shows the upper .
plane of the analyzed region and (b) shows the side plane.

‘Finally, the characteristics of the dielectric are expressed in

terms of the equivalent parallel circuit composed of the
capacitance and the conductance at the electric node in the
dielectric medium, as shown in Fig. 4. The physical mean-
ing of the lumped element is shown in Table I and the
formulation of this elements is expressed in (5) and (6). At
the node situated on the dielectric—air interface, the value
of the capacitance is assigned to be one half of that in the
inner node. In this analysis, losses i in the dielectric medium
have been neglected. '
Using this model of the stripline, the transient analys1s
of the stripline with a corner has been performed. The
input condition is assumed as follows in the equivalent
circuit: A sinusoidal voltage wave is applied through the
source resistance at the 4, nodes under the stripline on the
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Fig. 12. Time variation of the distribution of the magnetic ficld H, on the observed xz-plane in Fig. 5 for the same case as Fig. 10.

input plane. The source impedance is equal to the char-
acteristic impedance of the dominant mode in the dielectric
medium. This input condition approximates the excitation
of the TEM-wave. The other 4, nodes and D, nodes in the
input plane are terminated by a matching impedance. The
configuration of the input plane is shown in Fig. 8. The
shape of the input wave is expressed as a pulse train with a
spacing At in the time domain. In this numerical evalua-
tion, the interval Ad between adjacent nodes in the equiva-
lent is circuit is chosen, for example, to be 0.005 ¢cm. Then,
the time interval Az becomes 8.333 X 10~ ° ns. The period of
the applied sinusoidal wave is 213A¢ in this analysis, so its
frequency is about 56 GHz. These values of Ad and Af are
sufficiently small so that the resolution of the spatial and
time function is satisfactory. In the numerical computation,
all parameters in space and time are normalized to Ad and
At, respectively.

In Fig. 9, the numerical results for the characteristic
impedance and wavelength are plotted as a function of

W/H, and compared with analytically obtained curves.
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This figure shows that the numerical results are in close
agreement with the analytical ones. In the following fig-
ures, the spatial distribution of the ficld at each time is
obtained by taking the maximum values in the half period
of the applied wave because of computations on the time
axis. The xz-plane on which we observe the field is that of
Ad beneath the upper strip conductor as shown in Fig. 5 as
“observed plane”. The initial point of the time axis is
assumed to be the point at which the incident wave is
applied at the input plane.

Fig. 10 shows the time variations of the electrical field E,
in the case of the corner cut pattern () given in Fig, 5. It
is observed that the propagating wave curves the corner
smoothly and the VSWR at the incident side is small. This
result clearly shows that the cutting pattern of the corner is
suitable. However, Fig. 11 shows a comparatively large
VSWR for the other cutting pattern (2) shown in Fig, 5.
These results show that the cutting pattern of the corner
influences the propagation characteristics considerably.
Figs. 12 and 13 present the time variations of the magnetic
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Fig. 13. Time variation of the distribution of the magnetic field H, in the same case as Fig. 10.
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Fig. 14. Time variation of the magnetic field H, at the cross section (&)
in Fig. 5. This magnetic component corresponds to the current in the
z-direction.

field H, and H,, respectively, for the case of Fig. 10. Each
figure clearly shows that the conversion of the magnetic
component H, to the component H, occurs at the corner.
These magnetic components are the dominant terms of the
Poynting vector in each longitudinal section of the strip-
line. Both figures show that near the input port, both
magnetic components H, and H, are generated by diffrac-
tion of the input wave because of the plane-wave ap-

proximation of the input conditions. Fig. 14 shows the time
variation of the magnetic field H, at the cross section (a)
shown in Fig. 5, where the steady-state distribution is
established and the edge effect is evient.

The size of the program used is about 4.5 MB, and the
computed time for the transient analysis from =0 to
t=2.5T is about 80 s.

IV. CONCLUSION

The present study verifies that our method is appropriate
for the time-domain analysis of the stripline in three-
dimensional space. The obtained results demonstrate the
propagation of the wave through a 90° bend and show how
the direction of the magnetic field is changed by the corner
contour. We are now studying in more detail the time
variations of fields in striplines as a function of many other
parameters and examine the relation between the propaga-
tion characteristics for transient distributions and sta-
tionary continuous waves and the pulsed wave. These
results will be reported in later papers.
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The present method can also be applied to other three-
dimensional problems by using all merits of the method
[91-{11].
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I. - INTRODUCTION

TUDIES OF cooled mixer diodes began in 1956 with
‘Messenger’s [1] cooling of X-band IN26 diodes to
lower their noise temperature. However, no further work
was published on cooling mixers until 1973, when Weinreb
and Kerr [2] investigated the noise mechanisms in millime-
ter mixers and predicted that a 40 K double sideband
(DSB) mixer temperature was possible by cooling Schottky
diodes to 20 K. Only now has that sensitivity been achieved
and surpassed with a minimum DSB mixer noise tempera-
ture of 35 K and a DSB receiver noise temperature of 62 K
at 100 GHz.
This sensitivity is the result of several years of mixer
development at the Five College Radio Astronomy
Observatory (FCRAO) which has required considerable
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