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Transient Analysis of a Stripline Having a
Corner in Three-Dimensional Space

NORINOBU YOSHIDA AND ICHIRO FUIQ41

Abstract —The transient analysis of electromagnetic fields has shown its

utility not only in clarifying the variation of the fields in time but also in

gaining information on mechanisms by which the dktributions of an

electromagnetic field at the stationary state are bronght about. We have

recently proposed a new numerical method for the transient analysis in

three-dimensioual space by formulating the equivalent circuit based on

Maxwell’s equation by Bergeron’s method. The resultant nodal equatiou is

uniquely formulated in the equivalent circuit for both the electric field and
the magnetic field. In this paper, we deal with the stripline which should be
analyzed essentially in three-dimensionaf space because of its structure,
The time variation of the electric and magnetic field of the stripline having

a comer is analyzed and the remarkable changing of distribution of the
field is presented as a parameter of time and of conditions imposed by the

comer stmcture.

I. INTRODUCTION

T HE TRANSIENT ANALYSIS of electromagnetic

fields not only clarifies the variation of the fields in

time but also provides information on mechanisms by

which the distributions of electromagnetic fields at the

stationary state are brought about. We have recently pro-

posed a new numerical method for the transient analysis in

three-dimensional space [1], [2]. The method was based on

the equations obtained by Bergeron [3], The equations

show the character of the propagation of electromagnetic

‘waves in the equivalent circuit based on Maxwell’s equa-

tion [4]. This method has two important advantages for the

analysis. One is the formulation of the electromagnetic

fields in terms of the variables in the equivalent circuits.

This treatment enables us to see that the nodal equation is

uniquely formulated in the equivalent circuit for both the

electric field and the magnetic field because of the duality

of both field components. The other advantage is the

formulation by Bergeron’s method with its many merits,

such as the representation of the medium by the lumped

elements at each node and its reactive characteristics which

are represented by the trapezoidal rule of the differential

equation in the time domain. This treatment is based on an

iterative computation in time using only the values ob-

tained after the previous step. Consequently, the savings in

memory storage space and computer time is remarkable.

The formulation of this method is fundamentally equiva-

lent to that of the Transmission-Line Matrix (TLM), be-

cause both methods are based on the property of the
traveling wave, that is formulated as the general solution of

one-dimensional, wave equation by d’Alembert. But the

Bergeron’s formulation [5], in terms of the voltage variable
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Three-dimensional lattice network model of Maxwell’s equa-
tions.

and current varialble, presents the direct handling of the

electromagnetic field variables and the characteristics of

the medium instead of the division of each variable into the

incident and reflective components and the composition of

those in TLM method [6].

In this paper, we deal with the stripline which should be

analyzed essentially in three-dimensional space because of

its structure, The’ stripline is’ widely used as the transmis-

sion medium in MIC design, and its small size compared to

the wavelength is the main reason for, the good perfor-

mance of microwave components and usually permits the

treatment of circuits as a system composed of lumped

elements in the analysis. But in high-frequency application,

such as millimeter-wave devices, especially when using the

pulse-wave technique that has progressed remarkably with

the digital technique, the exact treatment of the higher

components in the spectrum of the waves are indispens-

able, so the distributed formulation of the devices in three-

dimensional space is essential.

In the following sections, the fundamental formulations

for the stripline by our method are briefly described, and

derived parameters, such as the ‘characteristic impedance

and wavelength, are examined and compared with those

obtained analytically. Lastly, the time variation of the field

distribution in the stripline with a corner is shown for
several conditions of the structure,

II. THREE-DIMENSIONAL NODAL ‘FORMULATION OF

MAXWELL’S EQUATION

A. Three-Dimensional Equivalent Circuit

We now consider the formulation of nodal equations for
three-dimensional analysis of the electromagfietic field in
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TABLE I
CORRESPONDENCESBETWEEN THE FIELD VARIABLES IN

MAXWELL’S EOUATION AND THE EQUIVALENT CIRCUIT AT EACH
KIND OF NODE IN THE EQUIVALENT CIRCUIT

—
Electric node , Magnetic node

L4ax.wlk Equ. Variables I Maxwelk Equ. Variables
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permeability L = )(,/? pwmeabillty c:= ).h/ 2

peral( zation AC=L7.d 2 >d magrwtizatim K’=#,$.12Ad

conduct, v,ty G. G+2 Ad
1

m~et ic
current 105= ‘-:9’’”’” J

the time domain. In Fig. 1, the three-dimensional network

model is shown. It is well known that this network gives a

fundamental connection between the field variables in

Maxwell’s equation. This model is used in other methods,

such as the “ TLM” by P. B. Johns. In this network, each

set of two-dimensional equations for the propagation of

waves in each plane is related to a node and the connected

lines. We interpret this network as the equivalent circuit, in

which the line between nodes is a one-dimensional trans-

mission line and the node is the point where the continuity

of currents occurs. In Table I, the correspondence between

the equivalent circuit variables and field quantities are

shown at every kind of node of the network. The nodes are

classified into two types. One is the electric node at which

an electric field component is treated as a voltage variable

and the other is a magnetic node at which a magnetic field

component is treated as a voltage variable. The electric

node corresponds to the shunt node and the magnetic node

correspond to the series node in the “ TLM’. However, in

our method the introduction of the magnetic current in the

magnetic nodes results in the existence of the shunt node

only in a sense of “ TLM’, where the continuity of current

is postulated. In this paper, all variables at the magnetic

nodes are characterized by the symbol “ *” because of the
duality of their physical meaning, as compared with their

interpretation at the electric node. In Fig. 2, the fundamen-

tal connection between the nodes in the network is ex-

pressed. The correspondence of the ,variables is also il-

lustrated in each node and each transmission line. The

direction of the Poynting vector, which is decided by the

set of an electric and a magnetic field component supposed

in each one-dimensional transmission line, is also shown.

Each of the supposed directions of the Poynting vector

coincides with that of the currents in both nodes of the

transmission line, so the currents are defined as the usual

conduction currents in the electrical circuit. The gyrator is

(a)

● ✎

!&d-v” v-+?4- v*

(1) (2)

(b)

Fig. 2. (a) Fundamental connection of the node in the network and
detailed expression of the variables in the equivalent circuit. The
direction of the Poynting vector is shown by the symbol “*” at each
transmission line. (b) Definition of gyrator in (a), (1) positive gyrator,
and (2) negative gyrator.

inserted in series with each magnetic node to show the

duality of the physical meaning of the circuit variables of

both nodes of each transmission line. At D. nodes, negative

gyrators are inserted, since the corresponding circuit vari-

ables and electromagnetic variables have a polarity oppo-

site to that at the nodes B.. We interpret this negative

gyrator as a circuit representation of the self-consistence of

the Maxwell’s equations, and the node to be inserted is

determined by the correspondence of circuit variables and

electromagnetic variables.

B. Bergeron’s Method

Next, we formulate the propagation characteristics of a

one-dimensional transmission line by Bergeron’s method.

In Fig. 3(b), showing, a section of lossless line, the propaga-

tion characteristics of waves in the time domain are given

by the one-dimensional wave-equation

u(k, ~)+z. i(k, ~)=o(k–l, t–At)+z. i(k –l, t–A~)

(la)

u(k–l, t)–z. i(k–l, t)=u(k, t–At)–z. i(k, t– Al)

(lb)

where the parameter k denotes the node numbers and z is

the characteristic impedance of the line, t is time and At is

the transit time between two adjacent nodes, which also

becomes the fundamental time step in the numerical com-

putation. Each lumped element to be connected with the

line at nodes is characterized as follows: the conductance G

is expressed in terms of its branch voltage Ugand current i~

by

t)~(k, t)= G(k)ig(k, t). (2)
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Fig. 3. Typical equivalent circuit (a) of the one-dimensional transmis-
sion line and its description (b) by means of Bergeron’s method.
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Equivalent circuit at each ~. node in the dielectric medium.

Dielectric loss k expressed by the parallel conductance.

In this equation, the conductance G is a function of the

parameter k at each node. The capacitance C(k) is defined

through the trapezoidal rule and is given by

uC(k,l)– RciC(k, t)=uC(k, t–Al)+RciC(k, i–Af)

(3a)

where

At

‘c= 2C(k) ‘
(3b)

In this equation, ( Uc, ic) is a pair of branch voltages and

currents of the capacitance. A comparison of both sides in

(la), (lb), and (3a) shows that all values calculated at time

t are only a function of ones at the previous time t – At.

The nodal equation for each node at time t is independent

of the values of the adjacent node at time t.The time

responses are thus iteratively computed at each time, t

from values of the circuit values at every node obtained at

the previous steps.

C. Three-Dimensional Nodal Equations

For the three-dimensional network, the characteristics of

the transmission line are formulated by Bergeron’s method.

In Fig. 4, the example of the equivalent circuit is shown at

the node A. where the electric field E, is supposed to be a

voltage variable and the magnetic fields – HX and H, are

supposed to be the current components in the directions z

and x, respectively. Application of (la) and (lb) to each

line connected to the node yields the following equation:

~(1, nz, rr, t)+zol,l(l, rn, n,t)

=1~(1, m,n–l, t–At)+zO~*(l, m,n–l, t–At)

(4a)

~(1, m,rs, t)-zOi~Z2(l, m,n, t)

=l;(l, nz, n+l, t–At)–zO~(l, rn, n+l, t-At)

(4b)

Vy(l, rn, n,t)+zolxl(l,l’ n,n, t)

=l~(l–l, m,n, t–At)+zO~(l –l, m,n, t–At)

(4C)

~(1, nz, n,t)-zol:z(l, m,n,l)

=1$(1+1, m,n, t –At)–zO~*(l +1, rn, n,t-At).

(4d)

The parameters 1, m, and n denote the described position

numbers of x, y, and z directions, respectively. Then (2) is

written with the notation of this case as follows:

~(1, m,n, t)=4G(l, rn, n) 1~(1, nz, n,t). (5)

Equations (3a) and (3b) are again written as follows:

~(1, m,n, t)– R,,lC(l, m,n, t)

=~(1, m,n,t-A t)+ RCIC(l,m, n,t-At) (6a)

where

RC= ‘t
8AC(l, m,n) -

(6b)

The conductance (G and capacitance AC are listed in Table

I and are shown to correspond to the conductive loss and

the electrical displacement of the dielectric medium, re-

spectively. The conductance G also corresponds to the

equivalent dielectric loss in the medium. These ‘quantities

are considered to be a function of the position variables 1,

m, and n. The continuity of the current at node A(l, m, n)

is given by

Izl– I,2+Ix1– Ix2–ld–lc=o. (7)

Substituting (4a)--(4d), (5), and (6a) into (7), the unified

nodal equation in a dielectric medium with conductive or

equivalent dielectric loss is given by

RCO(T~+ T;+ W:+ V;)+ ZOTC
~(1, m,n, t)== (8)

zO+RC. (4+z0.4G(l, m,n))

where Wp, T:, ~?~, and ~$ correspond to the right-hand

sides of (4a)–(4dt, respectively, and *C is equal to the right

side of (6a). Equation (8) is iteratively evaluated at every

A,l node, and the time response of the field in the overall

region is analyzed by the same procedure at other kinds of

nodes. Each component of the currents at the time t is

evaluated by substituting VY(t) in (8) by VY( t) in the left

sides of (4a)–(4d), (5), and (6a). The other variables at

other nodes also are obtained in the same manner. For

example, the voltage variable VY*(t) in the magnetic nodes

F. is given as folllows:

R:”(Yl+Vz+W3+Ti)+z~Y:
VY*(l’, m’, n’, t)=

zf + R:. (4+ zf.4G*(l’, m’, n’))

(9a)
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Fig. 5. GeometW of a stripline with a 90° bend.
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Fig. 6. Equivalent circuit of the surface of the stnpline with infinite
conductivities.

where

~:=
At

8AC*(l’, m’, n’)
(9b)

In such magnetic nodes, the conductance G* and the

capacitance AC* have duality with those in electric nodes.

These then correspond to losses of the magnetic current

and the magnetization. But (8) and (9) have the same form

and calculations are the same as for the electric nodes.

These characteristics occur as a consequence of the appli-

cation of the duality between the electric field and the

magnetic field in Maxwell’s equations. Thus, the introduc-

tion of magnetic currents is an important concept in this

method and constitutes the difference between this method

and the “ TLM” [7]. Both methods are fundamentally

based on the d’Alembert’s general solution for one-dimen-

sional wave equation, but the use of both voltage and

current variables in this method enables us to express the

characteristic equation of the medium by lumped circuit

element instead of the artificial stub in “ TLM”. This

formulation is extended to more complex characteristics

such as dispersive, resonance, and anisotropic media [8].

111. NUMERICAL I@ULTS AND DISCUSSION

The transient analysis for the stripline with a corner has

been performed by the method described in the preceding

section. In Fig. 5, the model of the stripline with the corner

is shown. In this figure, Ad is the interval between adjacent

nodes in the equivalent circuit. In order to describe this

model by the “Nodal Equation”, three different conditions

are introduced, namely, the boundary condition at the strip

conductor, the boundary condition at the free boundary,

which is supposed to be the surface of the analyzed region

in air and dielectric medium, and the condition of the

(b)

Fig. 7. Equivalent circuit of the free boundary. (a) The xz-plane of the
top of the anafyzed region. (b) The yz-plane of the side of the region,
where RI is the characteristic impedance of the free space.

/ Strip Conductor , ~

‘

Fig. 8. Equivalent circuit of the input condition, where R, is the char-
acteristic impedance of the stnpline, and E, is the voltage source, in this
anafysis, of the sinusoidal wave expression as E, = EOsin(2~/T) n At,
(E.:Amplitude, T Period of the sinusoidal wave, n: Number of
iteration).
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Fig. 9. Chmacteristic impedance and wavelength as a function
a straight stripline. ---- result computed by our method,
analytical results by E. Yamashita and R. Mittra.

W/H of
—- --

dielectric. Firstly, the boundary condition of the conductor

is described. The conductor is supposed to have infinite

conductivity, so the tangential component of electric fields

on the surface of the conductor should be zero. This
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Fig. 10. Time variation of the distribution of the electrical field EY,on the observed xz-plane shown in Fig. 5 and in the case of
the corner pattern @, where to is the initial time at which the input wave is applied to the input plane. 2’ is the period of

the applied sinusoidal wave.
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d

Ey
1.0

0.5

0
0 20 60 60 80 100

.Z/Ad

Fig. 11. Time variation of the distribution of the electrical field EY in
the case of the comer pattern @ in Fig. 5.

condition is realized by short-circuiting the appropriate

electric node, in which the tangential electric field at the

surface is the voltage variable, and by open-circuiting the

appropriate magnetic node, in which the tangential compo-

nent of the electric field is the current variable, that is, it is

considered as a magnetic current. These situations are

shown in Fig. 6. In the equivalent circuit, the plane in
which the strip conductor is positioned is arbitrarily de-

fined. In this analysis, the plane is situated at the plane

containing D., F., and E. nodes. Thus, the D. and En

nodes are short-circuited, because the electric fields EX and

E, are to be zero at both surfaces of the conductor, and F.

nodes are neglected because all the field components EX,

E,, and HY are equal to zero on the surface, Next, the free

boundary condition is expressed as a nonreflective

termination, at which the load resistance, equal to the

characteristic impedance of the free space, approximates

the matching condition. The equivalent circuit of this con-

dition is shown in Fig. 7, in which (a) shows the upper

plane of the analyzed region and (b) shows the side plane.

Finally, the characteristics of the dielectric are expressed in

terms of the equivalent parallel circuit composed of the

capacitance and the conductance at the electric node in the

dielectric medium, as shown in Fig. 4. The physical mean-

ing of the lumped element is shown in Table I and the

formulation of this elements is expressed in (5) and (6). At

the node situated on the dielectric–air interface, the value

of the capacitance is assigned to be one half of that in the

inner node. In this analysis, losses in the dielectric medium
have been neglected.

Using this model of the stripline, the transient analysis

of the stripline with a corner has been performed. The

input condition is assumed as follows in the equivalent

circuit: A sinusoidal voltage wave is applied through the

source resistance at the A. nodes under the stripline on the



496 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-32, NO. 5, my 1984

d

z/Ad

(a)

ma
40

0 20 40 60 80 100
Z/Ad

(b)

Xl. d

Hx 40

10

05

0 1
0 20 40 60 80 100

Zlad

(c)

d

o la 40 60 80 100
zl&d

d

ZI ad

(e)

*I%I

40

Z/Ad

(f)

d

o 20 40 60 80 100
Z/&d

(d) (g)

Fig. 12. Time variation of the distribution of the magnetic field H. on the observed xz-plane in Fig. 5 for the same case as Fig. 10.

input plane. The source impedance is equal to the char-

acteristic impedance of the dominant mode in the dielectric

medium. This input condition approximates the excitation

of the TEM-wave. The other AH nodes and D. nodes in the

input plane are terminated by a matching impedance. The

configuration of the input plane is shown in Fig. 8. The

shape of the input wave is expressed as a pulse train with a

spacing At in the time domain. In this numerical evalua-

tion, the interval Ad between adjacent nodes in the equiva-

lent is circuit is chosen, for example, to be 0.005 cm. Then,

the time interval At becomes 8.333x 10-5 ns. The period of

the applied sinusoidal wave is 213At in this analysis, so its

frequency is about 56 GHz. These values of Ad and At are

sufficiently small so that the resolution of the spatial and

time function is satisfactory. In the numerical computation,

all parameters in space and time are normalized to Ad and

At, respectively.

In Fig. 9, the numerical results for the characteristic

impedance and wavelength are plotted as a function of

W/H, and compared with analytically obtained curves.

This figure shows that the numerical results are in close

agreement with the analytical ones. In the following fig-

ures, the spatial distribution of the field at each time is

obtained by taking the maximum values in the half period

of the applied wave because of computations on the time

axis. The xz-plane on which we observe the field is that of

Ad beneath the upper strip conductor as shown in Fig. 5 as

“observed plane”. The initial point of the time axis is

assumed to be the point at which the incident wave is

applied at the input plane.

Fig. 10 shows the time variations of the electrical field EY

in the case of the corner cut pattern @ given in Fig. 5. It

is observed that the propagating wave curves the corner

smoothly and the VSWR at the incident side is small. This

result clearly shows that the cutting pattern of the corner is

suitable. However, Fig. 11 shows a comparatively large

VSWR for the other cutting pattern @ shown in Fig, 5,

These results show that the cutting pattern of the corner

influences the propagation characteristics considerably.

Figs. 12 and 13 present the time variations of the magnetic
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Fig. 13. Time variation of the distribution of the magnetic field Hz in the same case as Fig. 10.
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Time variation of the magnetic field HX at the cross section @

& Fig. 5. This magnetic component corresponds to the current in ~e
z-direction.

field HX and HZ, respectively, for the case of Fig. 10. Each

figure clearly shows that the conversion of the magnetic

component HX to the component H, occurs at the corner.

These magnetic components are the dominant terms of the

Poynting vector in each longitudinal section of the strip-

line. Both figures show that near the input port, both

magnetic components HX and HZ are generated by diffrac-

tion of the input wave because of the plane-wave ap-

proximation of the input conditions. Fig. 14 shows the time

variation of the magnetic field HX at the cross section @

shown in Fig. 5, where the steady-state distribution is

established and the edge effect is evient.

The size of the program used is about 4.5 MB, and the

computed time for the transient analysis from t = O to

t = 2.5T is about 80 s.

IV. CONCLUSION

The present study verifies that our method is appropriate

for the time-domain analysis of the stripline in three-

dimensional space. The obtained results demonstrate the

propagation of the wave through a 90° bend and show how

the direction of the magnetic field is changed by the corner
contour. We are now studying in more detail the time

variations of fields in striplines as a function of many other

parameters and examine the relation between the propaga-

tion characteristics for transient distributions and sta-

tionary continuous waves and the pulsed wave. These

results will be reported in later papers.
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The present method can also be applied to other three-

dimensional problems by using all merits of the method

[9]-[11].
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A Broad-Band, Ultra-Low-Noise Schottky
Mixer Receiver from 80 to 115 GHz

Diode

C. READ PREDMORE, MEMBER IEEE, ANTTI V. ~ISANEN, MEMBER, IEEE, NEAL R. ERICKSON,

PAUL F. GOLDSMITH, MEMBER IEEE, AND JOSE L. R. MARRERO

Abstract —A cryogenic 3-mm receiver has been developed which fully
utilizes the low-noise potentiaf of Schottky diodes by approaching the
shot-noise limit within 10 percent. Wkh a broad-band mixer design which
properly terminates the input sidebands and reactively terminates the
second harmonic of the local oscillator and its sidebands, the double

sideband (DSB) mixer noise temperature is 35 K in the best case. Tlds
design has given an average DSB receiver noise temperature of 75 K over
tbe 80 to 115-GHz band with a best noise temperature of 62 K.
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I. INTRODUCTION

STUDIES OF cooled mixer diodes began in 1956 with

Messenger’s [1] cooling of X-band 1N26 diodes to

lower their noise temperature. However, no further work

was published on cooling mixers until 1973, when Weinreb

and Kerr [2] investigated the noise mechanisms in millime-

ter mixers and predicted that a 40 K double sideband

(DSB) mixer temperature was possible by cooling Schottky

diodes to 20 K. Only now has that sensitivity been achieved

and surpassed with a minimum DSB mixer noise tempera-

ture of 35 K and a DSB receiver noise temperature of 62 K

at 100 GHz.

This sensitivity is the result of several years of mixer

development at the Five College Radio Astronomy

Observatory (FCRAO) which has required considerable

0018-9480/84/0500-0498$01.00 01984 IEEE


